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GPSS AND MODELING OF COMPUTER COMMINICATION NETWORKS
1. INTRODUCTION '

1.1 Objectives.

In order to determine the suitability of the discrete event
simulation lanquage GPSS for modeling computer network structures likely
to be encountered in command, control, and comunication (C3) systems,
several example computer networks were simulated using this language.
This report presents a survey of GPSS capabilities and peculiarities.
Problems encountered in translating GPSS programs from one availabhle
version of GPSS to another as well as explanation of differences in
simulation results are discussed. Results comparing performance of
four ring network structures similated in this study are also presented.

1.2 Background.

This is the first in a series of reports on the progress and
results of AMSAA's work in creating new and using existing models in
analyzing and predicting the performance of computer networks and their
supporting communications.

1.2.1 Relation to €3 Modeling. The study, construction,
and validation o simulation models aids the work of the €3 group

by providing:
e data to support conclusions about proposed system concepts,

e tools for evaluating alternative‘confiqurations posed by
requirements definition studies such as TOS CASE and ASAS FSD,

e the means to examine simultaneously computer system perform-
ance, network confiqurations, and imperfect communications,

® quantitative estimates of the effects of interoperability
requirements upon the performance of the primary mission
of a system and upon the supporting communications,

o data to augment that obtained from system testing, and

o estimates of the most difficult combinations of system
inputs to satisfy, which can be used to guide test planning
toward efficient and effective discovery of system
deficiencies.

1.2.2 Motivation. The work reported here was motivated
originally By an effort relating to TOS CASE in which varying approaches
were propased by contractors for modeling and simulating the combined
computer processing and comunication network for this system. Initially,
a mode! of computer communications developed for the Air Force called




SACD IN was proposed for use but subsequently was rejected because it
could not easily be modified to handle message routing in other than a
tree connected hierarchical fashion. The contractor then proposed
using a general purpose discrete event simulation langquage called GPSS
to write a simulation model using the dialect of GPSS implemented on 4
Control Data Corporation 6600 computer.

To prepare AMSAA personnel for analysis of the validity of the
! anticipated TOS CASE simulation mode), a study of GPSS was bequn. Because
only the UNIVAC dialect called GPSS 1100 was available to AMSAA personnel
at the inception of this study, the question of syntactically and seman-
tically correct translation of simulation programs (models) from one dialect
of GPSS to another was raised. Much of the work reported here deals with
answering this question. .
1.2.3 Approach. In order to develop expertise in GPSS modeling
of computer communication networks and to develop confidence in comparison
of models written in one dialect of GPSS with those written in a different
dialect, the team decided to translate known computer communication
network models from one set of syntax and semantics into the other.

HYodels of computer communications networks written in GPSS were
obtained from the open literature. Only those having a relatively simple
structure coupled with published simulation results for comparison
purposes were considered suitable for use in the study of translation
from one dialect to another. Three of the models were written in an
enhanced version of GPSS/360 for an IRM 360 series computer. The fourth
model had been written in GPSS 1100 for a UNIVAC 1108 computer.

Initially, the study team was restricted to using only a UNIVAC
1108 computer; so three of the programs were translated from GPSS/360
into GPSS 1100, and several differences in output results were noted.
Because the syntax of GPSS 1100 differs from that of GPSS/360 and its
later dialect called GPSS/V, the correctness of the syntactic translation
was studied. Careful desk checking of the translation by at least three
independent programmers revealed no discernable errors, leading to a
check of possible semantic differences.

b Semantic differences are those due to the way in which the
| simulation command interpreter is actually executed. If the interpreter
: is written in a high level language (e.g., FORTRAN), the differences
! may he due to the manner in which the various subprograms are compiled;
: if the interpreter is written in assembly language, the differences may
hbe due to different hardware characteristics such as word length.

Pecause the simulators both rely on pseudo random number gener-
ators to generate the stream of random events according to assumed prob-
E : ability distributions, it was first necessary to account for possible dif-
- ferences generated here. BRecause of differences in word length, the
largest representable integers in the two systems are different. Hence,
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the two pseudo random number generators are inherently different. Ini-
tially, it was postulated that either one or both sets of pseudo random
number generators may be exhibiting nonrandom behavior. To check this
hypothesis some tests of randomess were performed on the generators, and
these tests are documented in Appendix A. Even if the generators are
sufficiently random, semantic differences in the way in which the generated
numbers are subsequently used may be the cause of differences in the output
results. Deterministic and identical tables of numbers supplied to both
simulation dialects to guide event generation and flow in the models,
coupled with detailed traces of activity in the models were then considered
appropriate for finding differences. This approach required the avail-
ability of an IBM 360 computer system or equivalent. Ultimately, access

to an IBM 360 computer system with GPSS/360 was obtained. The pseudo
random number generators in both the GPSS/360 and GPSS 1100 simulations
were disabled, and identical tables of pseudo randem numbers (generated on
a CDC 7600) were appropriately formatted and inserted into the two dif-
ferent dialect simulation models. As a result, certain semantic differences
have been identified and are discussed in this report.

1.3 Organization.

Chapter 2 of this report discusses briefly the concepts of dis-
crete event simulation and presents a short introduction to the GPSS lan-
guage and some of its capabilities that are relevant to computer communica-
tions network simulations.

P

Chapter 3 introduces the ring network examples simulated in this
study and presents results of those simulations. Lessons learned are also
discussed.

The appendices include a summary of pseudo random number generator
tests and their results, listings of GPSS programs for the computer networks
used in this study, and a glossary of acronvms and abbreviations.

1.4. Summary of Conclusions.

Several conclusions were reached. They are:

(1) It is possible to correctly translate simulation programs
from one dialect of GPSS into another, even though GPSS/360 and GPSS 1100
differ in both syntax and semantics. The GPSS/360 syntax uses fixed fields,
and GPSS 1100 has a column free, easier to use format. Semantic differences
are due to inherently different pseudo random number generators, the docu-
mented use of differing default conditfons, and undocumented differences in
function interpolation. Because of these differences, care should be
taken when comparing output data from one dialect with that from another.

(2) GPSS/360 on the APG IBM 360/65 executes considerably faster
than does GPSS 1100 on the ARRADCOM UNIVAC 1108, about four to seven times
faster for the examples considered here and for other test cases that have
been run,

n
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(3) Both GPSS/360 and GPSS 1100 have attractive features for
the discrete event modeling of computer/communications networks. Messaqes
are easily modeled as dynamic entities called transactions. Lanquage
features are provided for causing message arrivals and other randomly
occuring events. Equipment entities, such as transmitters, receivers,
and message queues are easily modeled, Automatic collection and display
of statistics on system performance are provided.

(4) Preliminary analysis of end to end message transmission
delay data from simulations of four ring network link level protocols
indicates that at Tow system loading there is no significant (order of
magnitude) difference amonq them. The systems saturate or exhibit expo-
nentially unbounded end to end delay times when sufficiently heavy loads
are applied, and they do so in an order of increasing load consistent
with previously published data.

2. SIMULATION WITH GPSS

2.1 Discrete Event Simulation.

System simulation using models having state variabhles that change
state only at discrete instants of time, with time progressing in dis-
crete increments, is called discrete event simulation. For a given
interval of simulation time, points of event occurrence in discrete event
simulation are both finite and countable, whereas in continuous system
simulation the time of event occurrence is continuous. Pecause GPSS is a
discrete event simulation lanquaqe, any system heing modeled in GPSS
must be representable as a discrete event system. Doing so requires
what may appear to be some degree of oversimplification, but simpli-
fication is acceptahle if the model accurately reflects system behavior
without necessarily reproducing exactly and completely the actual system
operation. Since there are many different simulation languages available
to the user the features that distinguish GPSS will be axamined.

2.2 Features of GPSS.

Nne of the major advantages in using a language such as GPSS to
simulate systems is the convenience afforded by the lanquage T1]. Instru-
menting a simulation model to collect data and compute statistics reveal-
ing the performance of system components of interest is a major task in
constructing a system model. A large part of the statistics gathering
is intrinsic to GPSS; hence the programmer need not ordinarily be burdened
with this time consuming task. Along with its automatic data collection,
GPSS allows the modeling of many of the significant characteristics of
“real world" systems with much ease. The characteristics that are easily
represented include dynamic entities, equipment entities, operational
entities, data entities, and randomness considerations. Also suhliminally
used are the simulation clock and the event scheduling algorithm. A
brief description of each of these factors follows.
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2.2,1 Dynamic Entities. The dynamic entities, called transac-
tions in GPSS, are used to represent a flow of some sort through the
system. The transactions which “flow" through the model may either
cause an activity or be the recipient of an activity. In other words,

¢ the transaction may itself cause the state of the model to change, or it

- may have any of its associated parameters changed. The altering of a
parameter value of a transaction may in turn be used at another place
(or time) in the model to effect changes to the state of the model.

2.2.2 Equipment Entities. Equipment entities are used in
modeling components that have a specific action associated with them.
Equipment entities include storages, facilities, and loqic switches.
Storages are used to represent entities that may have their activity
. dictated by one or more transactions, whereas facilities are used to
o represent entities that may have their activity dictated by only one
transaction at a time. A logic switch is used as a binary state indicator,
3 such as locked or unlocked, availahle or unavailable, and open or closed.

1

2.2.3 Operational Entities. The operational entities are
used to perform a variety of functions. They provide for representation
of system relationships, model activity control, and the basic structure
of the model to name only a few. In GPSS the operational entities are
blocks, queues, user chains, groups, and save values. Blocks are the
basic unit of the model structure, Queues are generally used to monitor
delays encountered by transactions at specific points in the model.

User chains are used to alter the normal “flows" of transactions in a
user defined manner. Transaction "flow" may be controlled on the basis
of group membership, where group membership indicates a certain relation-
ship existing between transactions in the group. Savevalues are used to
store information at certain locations in the model.

W'-—,v
.

2.2.4 Data Entities. Data entities are used to input data
to and output data from the model! as well as to represent certain data
relationshins. The data entities available to the GPSS user include
functions, variahles, and tables. Functions are a means of entering
distributions of various types to the mndel. The distributions may
represent real system data or they may merely specify standard distribution
forms that may be necessary to the simulation. Variables are used to
represent system data relationships. Tables are included as a means of
extracting data from the model.

2.2.5 Pseudo Random Number Generators. In addition to the
various entities that can he modeled, the GPSS programmer has a number
of pseudo random number generators avajlahle to him to aid in the simula-
tion of randomly occurring events. The pseudo random number generators
are actually deterministic, of course, but this offers one distinct
advantage--reproducibility of simulation runs for program debugging
purposes using the same sequence of numbers from run to run.

2.2.6  Simulation Clock and Event Scheduling Algorithm. The
simulation clock and the event scheduling alqorithm are related concepts.

13
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The GPSS simulation clock does not advance time in fixed unit increments.
Instead the simulation clock is advanced only when the next event is
scheduled, and is advanced to that next scheduled time directly. Event
scheduling 1s effected by scanning one of several "event chains,“ or
ordered lists of transactions. After the appropriate chain is scanned,
processing of transactions occurs on the basis of scheduled departure
time, currently assigned priority, and time resident on the chain.

After all events that can take place at the current simulation clock

time have occurred, the simulation clock is advanced to the next scheduled
event occurrence determined by a scan of the future events chain. Simula-
tion continues in this fashion until) an event occurs that terminates the
simulation at some desired point.

2.3 Comparison of GPSS/360 and GPSS 1100,

The two dialects of GPSS availahle to the study team were IBM's
GPSS/360 2] and UNIVAC's GPSS 1100 [3). The IBM version of GPSS executes
on the APG IBM 360/65 computer system, and the UNIVAC version executes on
the ARRANCOM UNIVAC 1108 computer system. These two versions of GPSS are
distinct implementations of the same discrete event sirmutation concept,
but there are a number of differences hetween them as discussed below.

2.3.1 Syntax. Both versions of GPSS have the same bhasic
block structure, but syntax varies considerahly between the two. UNIVAC
GPSS 1100 uses a relatively free form input format in its statement
specification language. Similar to the UNIVAC Assembler input statement
formats, various fields appearing in the line image of a GPSS 1100 source
statement are not column dependent, are simply separated by one or more
hlank spaces, and in some cases are not required to appear in a specified
order. In IBM GPSS/360 the fields of a source statement must appear in
specific column locations in the line image. For example, the location
field used to identify a specific statement for later symbolic reference
must beain in column two and not extend past column six. This places a
five character limitation on statement names or identifiers. Identifiers
in GPSS 1100 can be more than five characters in length, resulting in
the ability to use more descriptive location names.

2.3.2 Function Definition. Another difference hetween the
Tanquages ¥s in the area of usér defined versus simulator supplied func-
tions. Both simulators provide several callable pseudo random number
qgenerators with which simulator supplied uniform distribution functions
are generated and for vhich the user need only supply the end points. In
order to specify an exponential probah{ility distribution function or a
Gaussian distribution function in IRM GPSS/360, the user must supply a
finite set of x and y coordinates that, coupled with simulator supplied
1inear interpolation, anproximate the desired distribution function.
NDependina on desired accuracy, approximations of 24 to 60 or more points
are tvpically used. The UNIVAC GPSS 1100 simulator supplies uniform,
exponential, and Gaussian distribution functions as built-in components
of the lanquace. To invoke the exponential or Gaussian distribution,
the GPSS 1100 user need only reference them with appropriate parameters
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(a mean value for the exponential function and a mean and var{iance for
the Gaussian function). As with the IBM GPSS implementation, the user
ca? define any other desired functions hy specifying appropriate sets of
points.

2.3.3 Memory Allocation. PRecause IRM GPSS/360 allows the
programmer'tU'EEEETTVxETfEEF'HET7Hord or fullword values for parameters
and savevalues, the programmer can save some memory space for allocation
to other purposes. This represents an advantage over the GPSS 1100
version. The assignment of halfword parameters and savevalues normally
might be used only minimally by most modelers. A second and fairly
small henefit is that smaller models run faster. Perhans there are only
a few instances where a decreased run time may be noticeable, but in
these few instances it may he a large advantage. The feature of variable
word size for parameters and savevalues gives GPSS/360 greater flexibility
than GPSS 1190,

2.3.4 Function Interpretation (Inter o1ation). The two versions
of GPSS diTTer sTightTy Tn the way that they perform interpolation in
user defined functions. For example,a continuous function may be defined
with x-coordinate values of 0 and 1000 and corresponding y-coordinate
values of 1 and 6, respectively. This defines a straight line segment
between the points (0,1) and (1000,6). MNow, given that the x value is
to be determined by some random number generator with values ranqinqg
from 0 to 999, and that both interpreters operate by truncation rather
than rounding, the functions can then yield results of 1,2,3,4, or 5
with equal likelihood. Since the representation of single-precision
floating point numbers in IBM 360 computers uses a 32-bit hexadecimally
normalized format and in UNIVAC 1100 computers.a 36-bit binary normalized
format, the representation of certain fractions is not exact.

The expression of certain numbers was found to be a problem in
the ahove example. It was found that for an x value of 200, the IBM
sirulator returned a y value of 2--the result that one would expect.

The UMIVAC simulator, however, returns a value of 1 for the same input

x value, Further investiacation found that both the IBM and UNIVAC
versions returned the correct y value of 2 for an x value of 201, and
the correct y value of 1 for an x value of 199, The problem again arose
in the evaluation of x coordinates of ANN, AN0, and 800.

One reason for the discrepancy may be attributed to the order
in which arithmetic operations are carried out in the interpolation
process. Since truncation is used, the order of operations is important.
For example, letting (xy,y;) and (xz,y ) be the endpoints of a continuous
straightline function in which intermediate interpolated values are
desired, the interpolated value y is given hy:

y = [lyp=y)/{xp=x1) T *x + [{xoyy = X3¥5)/ (xp-%1)]

=mx + b, where
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m= [(y2-y1) / (x2-x1)1, and
b=y if x3 = 0.
In the case considered here, b = y; .

Two of the possible combinations for ordering operations in the
computation of y are:

Approach 1:
Step 1: set m:

Cly2-y1)/(x2-x1)
Step 2: set z :=m « X

Step 3: sety =z +b

Step 4: set y := integer [y] , i.e. truncate fraction.

Approach 2:
Step 1: Set z :

(y2-y1)°x
Step 2: Set w :

2/ (xp-x1)

Step 3: Sety :=w+ b

Step 4: Set y := integer [yl .

In certain instances such as (xj,y1) = (0,1) and (x2,y2) =
(1000,6) and x = 200, Step 3 of Approach i produces 1.9999999526 for
the UNIVAC single precision floating point format and 1.99999904&810
for the IBM single precision floating point format. If the order of
operations in both IBM and UNIVAC GPSS implementations corresponds to
Approach 1 (and at least IBM GPSS/360 documentation [227 pp. 75 & 205
seems to so indicate), then the y value returned in both systems (after
truncation) would be unity. Using Approach 2 with the same data items
as above, the result is the integer value y=2 for both the UNIVAC and
and IRM interpolation schemes. Empirical results using the above data
items in both GPSS implementations produces interpolated integer values
of y = 1 for the UNIVAC implementation and y = 2 for the IBM implement-
ation, indicating that perhaps the available IBM GPSS documentation
does not accurately reflect the actual ordering of operations, or that
the documentation available to the study team does not include all
possible change notices. The UNIVAC implementation would appear from
this single sample to accurately follow the operation ordering stated

‘in the IBM documentation. In any event a likely cause of observed

differences in GPSS function interpolation between the two implementa-
tions is due to different (nonequivalent) orderings of finite precision
floating point arithmetic operations.
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Determining the exact cause of the differences would require
laborious and time consuming detailed examination of the assembly level
machine code for the two GPSS implementations, which is beyond the scope
of this study. The most important fact has been ascertained: namely,
exact and correct syntactic translations of GPSS programs between IRM
GPSS/360 and UNIVAC GPSS 1100 can produce differing output values that
are caused by semantic differences in the implementations of interpolation.

2.3.5 Miscellaneous Differences. Miscellaneous differences
between GPS3/38D0 and GPSS 1100 include the simulation clock starting
time and the calculation of standard deviations in the standard statisti-
cal output. The IBM version of GPSS starts its simulation clock at time
one, while the UNIVAC version starts its simulation clock at time zero.
This is a minor difference, hut one whose effect can be seen when a
model's transaction routing is a function of absolute simulation clock
time. The UNIVAC clock can be aligned with the IBM clock by specifying
that no transaction enter the model before time one. Differences in
calculated standard deviations, though :mall, were observed when start
time, and the generation and movement of all transactions were forced to
be identical in deterministic models. The reason for these standard
deviation differences is not apparently due to one version producing
hest estimates of standard deviation and the other not doing so, and the
exact reasons for these modest differences are not yet understood.

2.3.6 Random Processes. One point to be considered when
running stochastic simulfations is whether processes to be modeled as
random can be modeled acceptably. Each of the two versions of GPSS
offers pseudo random number generators to aid the modeling of stochastic
processes. IBM GPSS/360 offers one such generator replicated eight
times. Hence, a user can implement up to eight distinct seguences of
random numbers. The sequences will be identical initially unless the
user inputs a seed different from the default value to one or more of
the generators. UNIVAC GPSS 1100 offers ten distinct pseudo random
number generators. The generators are of the same type (either linear
or mixed 1inear congruential) but use different seeds and multipliers.
Statistical properties of pseudo random number generators for both GPSS
versions were studied to determine whether the generators are random
enough, and details of that study are presented in Appendix A. In summary
the pseudo random number generators are generally random enough for use
in the ring network simulations discussed in the next chapter.

2.3.7 Run Time. One last consideration of the differences
between IBM GPSS/360 and UNIVAC GPSS 1100 is simulation execution time
(or run time) and its corresponding cost. The CPU time for four ring
network models using the IBM GPSS simulator was from one fourth to one
tenth of that required to execute the same models using the UNIVAC GPSS

-simulator. For example, GPSS simulation of the DLCN model described in

Chapter 3 required 4 min. 16 sec, of CPU time for the IRM version and
30 min, 33 sec. of CPU time for the UNIVAC version of the model using
identical system parameters. For this example the UNIVAC version runs
about seven times slower than the IBM version. There is apparently a
sfignificant speed (and hence, cost) advantage in running GPSS/360 models
over the GPSS 1100 models.




Turnaround time, measured using wall clock time, was also generally
better on the APG IBM 360/65 than on the ARRADCOM UNIVAC 1108 when running
corresponding GPSS simulations for the four ring networks considered in
Chapter Three. Wall clock time includes a measure of system congestion,
and to the programmer fast turnaround is usually of interest. Sample
: simulations run as the only batch job on the system at times when time

i sharing demand service was cut off indicate similar ratios of wall clock
' time. Sobel[7] was plagued by extraordinarily long run times under similar
system loading conditions on a UNIVAC 1100/42 system. Simulation runs
that finished normally on the APG IBM 360/65 in an hour of wall clock time
terminated abnormally on the much faster UNIVAC 1100/42 system in approxi-
mately four hours of wall clock time on an essentially empty system, where
abnormal termmination was caused by the need to exceed the programmer speci-
fied run time limit. Although the UNIVAC 1108 is a faster computer than
the 1BM 360/65 according to Schriber [1] the UNIVAC GPSS 1100 simulator
appears to have a far less efficient implementation than does the IBM
GPSS/360 simulator. Models executed from four to seven times faster in
the IBM version. In addition, comparison of wall clock times for the four
ring network simulations revealed that the IBM 360/65 system gives from
two to three times better turnaround than does the UNIVAC 1108 system.
This may not be true in all modeling situations, but for the rather simple
ring network structures studied IBM GPSS/360 is more efficient than UNIVAC
GPSS 1100. This conclusion is, of course, system configuration and site
dependent.

2.4 Suitability.

2.4.1 Ease of Model Implementation. The first factor in deter-
mining the suitability of GPSS for modeling computer communications networks
is the ease of model implementation. Each block in the structure of a
GPSS model may represent a separate action block in a flowchart of the
system being modeled. For instance, the process of capturing a facility
for some length of time and then relinquishing control of the facility
requires three GPSS blocks: one to seize the facility, one to advance the
clock, and one to return the facility to its previous state. This is
considerably simpler to specify in GPSS than it might be in many other
programming languages in which it may be necessary to write one routine to
implement each of the three GPSS blocks. The event processing routines
E are intrinsic to the GPSS language, so the user need not be bothered by
A the possibly unpleasant task of describing each action in detail.

'j¥i 2.4.2 Understandability. Another factor in the ease of model

1 implementation in GPSS is this Ianguage's choice of block names which aids
i understandability. The process of obtaining control of some facility is
written as SEIZE "facility" in GPSS. The SEIZE block is then a model
statement that can be readily understood by managers as weil as program-

mers, The majority of blocks in GPSS are named in such a way that the
block name describes the block function.
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2.4.3 Standard Statistical Output. Another advantage in
building modeTs with GPSS 1s the standard statistics gathering intrinsic
to and aided hy the language. Statistics such as queue times, storage
contents, and facility utilizations are all collected automatically by
the GPSS simulator. These items, along with a large number of other
useful statistics, are printed in a standard statistica) package in the
output report of the program. Additional information concerning the
model run can he ohtained hy the inclusion of user defined tables in the
output report.

2.4.4 Optiona) Output. - As ontional output, TRACE and PRINT
Mlocks are availabhle to aid in the debuaaino of a GPSS proaram, After
all known bugs have been removed from the simulation model, the proqrammer
may snecify optional output formats and histoarams as well to make the
outnut understandahle to the neespecialist.

2.4.5 Level of Detail. An additional consideration in assess-
ina the anpropriateness of GPSS for computer comunication network models
is the level of detail permitted in the models. If the modeling objective
s to develnp an exact detailed renlica of the real world system, then
jt 1s doubtful that GPSS would be a suitable lanquage. If, however, the
ohjective of the model is to aain aeneral insights into how a system
will perform under various circumstances, then GPSS could he a sujtable
lanmane. BRecause there are memory space limitations on the size of the
GPSS progqram, some sirplifications must be made as a trade-off. In
deciding whether to model in GPSS, the analvst must determine whether
the amount of simplification required is acceptable. Language features
pernit the nrograrmmer to command reallocation of the available data
storage space among the competing entities invoked by block specifications.
However, large models (i.e., those with larae numbers of blocks or large
numbers of sirultaneously active transactions) can easily exceerd the
available storage on the machine executing the GPSS simulator. In such
cases the prograrmer mav he forced to reduce the level of detail sirulated
in order to get his model to run at all in the existing hardware/software
environment,

Similar Aecisions and limitations are faced hy analysts and
proarammers in every lanaquage chosen for performina simulation. In some
Janauaaes the ahflity to call operating system service routines or other
lihrary routines may he more easily performed than in fiPSS. Resolving
nroblens at acceptahle cost in time and effort is the key jssue and
rust he traded against ease of simulatinon model implementation directly
available from lanquaane features and level of detail required,

3. COMPUTER COMMUNICATIOMN METWORK MODELS

3.1 Network Concepts and Terminoloay.

Cormnuter communication networks are essential components of
military C3 systems. Computer communication networks permit users to
access resources such as hardware units, software packages and data files
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in a remote computer system., One can view the structure of a computer
comrunication network as beina partitioned into two parts, a communi-
cation network (sometimes called the communication subnetwork) and a
user resource networkl4],

3.1,1 Coomunication Metwork. The communication network comprises
the switchina computers lor nodes] and the communication channels. Its
functinn is to deliver messages from one node to another,

3.1.2 User Resource Network. The collection of terminals and
computing resources cormprises the user resource network. These resources
are connected to switching nodes and communicate with each other by way
of the comunication network.

3.1.3 Hosts, Protocols, and Network Function. The computer
systems in the user resource network are called hosts, ar1 a set of
protocols is implemented in the operating system of each host. These
protocols are procedures to inftiate, maintain and terminate software
communications via the nodes of the communication network. A host
corputer may accent johs (such as requests for processing, data base
queries or updates, etc.) from local or remote users. Remote jobs are
received as messaqes from the comrunication network, and require extra
processing time for protocol handlina. When processing of the remote
task is comlete, the results are renackaqed as a message {or a set of
related messanes) and are returned to the remote users via the cormuni-
cation network.

3.1.4 Message Switching., The hasic techninue hv which messaaes
are delivered Trom source node to destination node in a communication
network is called messaae switchina. In this technique a messaqe entering
the network is firSt passed o 1ts oriain node where it may bhe stored
while it waits for route selection according to some routing algorithm
and where it mav aqueue for its outbound communication channel, When the
channel becores free, the messaqe is transmitted to the next node along
its route to the destination, and the above nrocess is repeated unti}
the messane is delivered to its destination node.

3.1.5 Packet Switching. - A modification of message switching
is a technique called packet switching wherein each message 1s decomposed
into maximm length disjoint subsets called packets. FEach packet is
identified for later message reassemhly, and each can he routed independ-
ently through the comrunication network.

3.1.6 Performance Measures. The total elapsed time from the
arrival of a messaqe at 1ts source node to the successful delivery of
this messaqe to its destination is called end-to-end delay and is an
irmportant performance measure of both message and packet switched networks.
Factors influencing this performance measure tnclude assuned {or actual)
messaoce arrival and messaaqe length statistics, routing algorithms, channel
service and error rates, resource contention and assianed priority classes,
and queueing and buffering delays enroute. In order to minimize end-to-end
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delay, designers need tools with which to predict its mean, variance, ;
and distribution subject to sets of input parameters. Other performance
" measures and the effects of design parameters must also be analyzed in
order to determine quantities such as optimal finite buffer size, channel
utilization, and system throughput (1.e., messages/unit time).

3.2 Network Modeling.

1 Queueing network models have heen used extensively in the per-
formance analysis of message switched (or packet-switched) comrunication
networks.

3.2.1 Analytic Models. Closed form analytic models, when
available,are advantaqeous Tn that they can lead to low computatfonal
cost predictions. Exact analytic analyses are restricted to certain
classes of simplified models [5], and results for general models with
more complex features, such as adaptive routing aloorithms and finite
buffer space, are not yet available,

3.2.2 Simulation Models. Discrete event simulation models
have been USed both to verity the adequacy of simplified analytic models
and to provide performance analyses in cases as yet too corplex for
adequate analytic models. The qenerality of simulation models {s paid
for in higher computational costs and aenerally areater computer execution
times than may be required for evaluating analytic models. If partial
analytic results are available, mixed analytic and simulation models
help to reduce sirulation costs. In many cases the system description

| parameters such as non-Poisson arrival statistics and state transition
probabilities are either not available or not directly useable in the
analvtic models; whereas enough information may be available to implement
a discrete event simulation whose input is a 1ist of measured arrival
events from some actual systems.

3.3 Network Topologies.

Fiqure 3.1 shows three basic topologies cormonly found in com-
puter comrunication networks: the mesh, the tree, and the ring; vari-
: ations of these also commonly occur. Internetwork confiaurations wherein
' _ nodes in one topoloafcal network structure act as gateways to other (or
even the same) topoloqical network structures are also frequently encountered.

L 3.3.1 Mesh. A mesh connection of nodes is characterized by a
1_4_ connectivity generally qreater than or equal! to two at each node so that
! ’ at least a suhset of nodes can select alternate routing paths between

) source-destination pairs,
]

3.3.2 Tree. A tree connection is characterized by a hierarch-
1ca1 structure 1n which the message path hetween two nodes at the same
Jevel in the tree must pass through a common ancestor node at a higher
level in the tree.
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Figurc 3.1: Some Computer Communicatisn Network Topologies
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3.3.3 Ring. The ring is characterized by a node connectivit
of exactly two and a unidirectignal transfer of infzrmation around the Y
communication links. A message 90ing from a given node to its predecessor
node in the ordering implied by the direction of information transfer on
the ring must pass through all the nodes on the ring to reach its destina-
tion.

3.3.4 Vvariations. Topological variations in mesh connections
range from minimal to maximal connectivity, and to structures resembling
tree structures with cross connections between a subset of nodes in
different branches but at the same level in the tree. The principal
topological variation for ring (or loop) networks comprises two or more
rings (usually passing messages in opposite directions) for greater
reliability and increased throughput.

3.4 Ring Metwork Structures Considered.

Because the routing structure of rings and loops is determin-
istic and simple, and because GPSS models of both message switched and
Facket switched ring networks are readily availahle in the literature
(6,71, this network topology was chosen for further investigation in the
simulation study of computer communication networks presented here.
Validation of the simulation models and comparisons with prior work of
others are possible for this topoloqy because earlier simulation results
are availahle in the open literature 78,97, and this provides greater
documentation and insights than are usually available for more complex
topological structures.

A loop network is sometimes distinguished from a ring network
according to whether the communication access control protocol is
centralized (loop) or distributed (ring). Some authors refer to loops
and rings interchangeably, including those who have designed 1oop networks
with distributed control mechanisms [8,9,10,11,12].

Four basic types of single loop networks have been proposed in
the literature, namely, the MNewhall, Pierce, DLCN, and Playthrough struce
tures. These loop networks are distinguished by their transmission
control and link access mechanisms,

3.4.1 Newhall. The earliest loop structure was proposed by
Farmer and MewhalY 1131, and is commonly referred to as a Newhall loop.
In this structure a single control token is passed from one loop interface
to the next until it reaches a node with a message to transmit. That
node temporarily seizes the control token and starts transmitting its
(variable length) message to an addressed destination node. Intervening
nodes pass this message to the destination node which, according to

‘varying implementations, either copies the message into its arrivals

buffer or removes the message from the loop. For error checking purposes
the message sometimes is permitted to circulate to the receiver portion
of the source node, which then performs a consistency check and removes
the messaqge from the loop. Alsn, depending upon implementation, the




source node currently in possession of the control token may transmit

one or more variable length messages before relinquishing control of the
loop by passing the control token to the next node in sequence. Only one
source node may transmit at a given time, and all other potential source
nodes must wait to transmit queued messages until they receive the control
token. Several experimental and commercial loop communications systems
for interconnecting computers and components have been based on minor
variations of this link level protocol structure (e.q., [14, 15]).

3.4,2 Pierce. The Pierce loop 716,17,18,191 divides communica-
tion space on the lToop into an integral number of fixed size slots,
called packet frames, into which data packets can be placed. To send a
message, a node segments the message into fixed length packets, appends
necessary overhead information to identify both the packet's number and
the message to which it belongs, places each packet into the next available
empty slot passing the node, and marks the slot as full. As this full
message packet proceeds toward its destination, the other nodes along
the route examine the header information in each packet frame to ascertain
which of them is the addressed destination. The destination node, having
recognized its address, copies the data being received and either fills
the slot with new outbound information or passes this now empty slot to
the next node. Incorporated into the loop is a single special control
node that maintains time slot synchronization for the loop and prevents
buildup of undeliverable packets. The header of each packet passing
through this control node is marked; if a packet tries to pass through
this control node a second time, it is typically destroyed, creating an
empty slot.

3.4.3 DLCN., The link level transmission scheme for the distri-
buted loop corputer network (DLCN) 76,8,97 uses a shift register insertion
technique to place variable (but hardware restricted) length messages
onto a ring. Two shift reqister buffers are used; one is a variable
length delay buffer that receives data from the predecessor node, and
the other is a fixed length shift register that contains data to bhe
placed onto the ring at the present node interface.

A message arriving for transmission at a given node waits in the
output buffer until end of message is detected for the data message pass-
ing through that node from predecessor to successor nodes. When this
event occurs, new incoming data from the predecessor node is routed into
the delay buffer, and data in the output buffer is shifted out onto the
ring, thereby splicing the waiting messaqe at this node between two mes-
sages already in transit on the rinqg, In other words, so long as there
is enough space available in the delay buffer to hold an incoming message,
precedence is usually given to transmitting a newly arrived or already
waiting message at the present node ahead of an incoming message already
on the ring. This technique tends to minimize waiting times for messages
to be placed onto the ring at the expense of randomly delaying transmitted
messages en route to their destinations. The maximum length message, which
is in effect a variahle but maximum length packet, is fixed by the length
of the delay buffer at each node. When a message reaches its destination

24




it is removed from the ring by that node. If the message is received
correctly, a high priority acknowledgement message is placed on the ring
by the destination node, addressed to the source of the received message.

Presumably, a message whose source or destination fields are
corrupted will be error checked in such a fashion as to prevent the
wrong destination from acknowledging correct receipt of the message. As
with receipt of a negative acknowledgement, lack of a positive acknowledge-
ment after some appropriate time period (called a time out) could cause
the source node to retransmit the data message. A message unclaimed by
its destination would also presumably be removed from the ring when the
source address is recognized by some source node as part of its check
and forward operations. Since DLCN uses a distributed control mechanism,
there is no central controller to perform any of these functions.

3.4.4 Playthrough. The Playthrough mechanism for distributed
control of ring networks liﬁ,ll.l?? is a check and forward 1ink level
control protocol that provides for simultaneous transmission of multiple
variable length messages of any length. Control is completely distributed,
and data and control messages both share the ring. Control is based on
a special synchronizing message (or token) called GO that differs from
the Newhall synchronizing token in two ways: first, GO precedes rather
than follows data messages, so that it can continue around the ring
seeking new messages to activate; and second, G0 circulates perpetually
despite the presence of other traffic. This perpetual circulation is
achieved by giving G0 a higher priority and allowing it to preempt tempo-
rarily any data message it overtakes. Thus GO appears at times to
travel inside data messages, or in golfing terms, to “playthrough.” The
protocol hears the name of this distinctive feature.

When GO arrives at any node with a message to send, transmission
may begin if there is a free path to the destination. To implement this
rule without collisions, other control messages precede and follow the
data message to update the other nodes about changes in loop status. Thus
the nodes must be able to recognize control messages and maintain a modest
amount of local information about the ring. In order to propagate such
status information, the update control messages play through any data
messajges they encounter. Although the update messages are synchronized
by GO, their even higher priority causes them to precede GO so that each
node has the correct status information before GO arrives.

Some operational aspects of this ring are worth noting. Data
messages can be preempted only at their sources. This means that there
is no store and forward phenomenon or huffering delay en route to the
destination, except for a small fixed amount at each node. The delays
from preemption are brief because the intervening control messages are

‘short. Hence, the primary message delay is due to queueing at the source.

Except for GO which continues traveling, each control message
makes exactly one complete circuit of the ring and is removed by its
source. This permits acknowledgements from the destination node to ride
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for free on returning control messages and to avoid queueing delays. 1In
addition, control messages complete the round trip in a fixed time that

can be determined dynamically. This enables a very accurate timeout mecha-
nism to be used for error detection and for capture and removal of unacknowl-
edged or corrupted control messages.

3.5 GPSS Models of Ring Networks, Program Modifications, and Correc-
tions.

Three network models written by C.C. Reames [6] in GPSS/360 were
obtained through the assistance of Professor M.T. Liu of The Ohio State
University. These programs for the Newhall, Pierce, and DLCN single ring
computer networks were then modified to run under GPSS/360 on the APG IBM
360/65. Listings of these GPSS/360 programs can be found in the appendices
of the PhD dissertation by Reames[6], pages 178 to 194. Short excerpts
showing our modifications to these programs are included in Appendix B.
They were aliso translated into GPSS 1100 for execution on the ARRADCOM
UNIVAC 1108. GPSS 1100 1istings can be found in Appendix C; the line for
line comments are the same as those for the IBM versions in [6] and were
thus omitted here.

A GPSS 1100 simulation program appearing in [7] for the Play-
through protocol ring network, found here in Appendix C, was modified and
corrected slightly and also translated into the GPSS/360 version found in
Appendix B, In this case, line for line comments are included in the GPSS
1100 and the GPSS/360 versions to align the translations.

Several modifications to the original GPSS/360 and GPSS 1100
programs were made; some changes were necessary to allow the models to
execute under GPSS/360 and/or GPSS 1100, and some were made to align the
assumptions concerning message routing and error handling and to correct
minor errors.

2,5.1 Changes to the Pierce Model. The GPSS/360 (enhanced)
Pierce network simulation program referred to the absolute clock standard
numerical attribute, which is not available directly in either of the
available versions of GPSS/360 or GPSS 1100. Hence, additional code to
effectively simulate the absolute clock facility was placed into the Pierce
network simulation programs between labels LASTP and PATW,

3.5.2 Changes to the DLCN Model. The original DLCN program [6]
attempts to simulate the effects on system loading and total message transit
time (or end to end delay) caused by noise corrupted messages that include
one or more erroneous characters. If the message (i.e. transaction) is
marked as being received in error, it is discarded by the destination
node, a negative acknowledgement is sent to the source node, and the
message is placed at the front of the source node message queue for retrans-
mission. Unfortunately, the implementation of this feature incorrectly
counts the erroneous message as a successful reception (in terms of the
statistics for end to end delay, and queueing time), and then resets the
corresponding message's time in system tc zero so that it appears and is
counted in the statistics as a newly arriving message that encounters
hardly any queueing time thereby slightly skewing the output statistics.,
Because of this approach to handling the simulation of erroneous messages
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with a mean character error rate of one in ten thousand, mean total trans-
mission time for all messages handled by the network when errors are per-
mitted to occur is about 10 percent lower than the mean total transmission
time found when no errors occur, as seen in Figure 3.2. Such a result is
counterintuitive and slightly incorrect. Because the other ring network
simulation progr ms have no provisions for handling messages with errors
in them, the character error generation facility in the DLCN program was
disabled, resulting in a version referred to as DLCNNE for "no errors“.
This allows a more uniform comparison of simulation results for the dif-
ferent ring network protocols and removes an apparent cause of skewed
results in the total time statistics for DLCN.

3.5.3 Changes to the Playthrough Model. Because of the rather
complex and specific ordering in which messages must be placed on the
communication 1inks, the Playthrough simulation program maintains its own
user chains, which are in effect user controlled transaction queues. The
user chain is scanned in first-in first-out order to locate the first
message in the queue having a free path to its destination. If one is
found, that message (transaction) is removed from the queue and the remain-
ing entries are left in their original order in the queue. This is accom-
plished by circularly shifting the queue entries and examining the leading
entry until either a message with a free path is found or until the queue
is restored to its original condition given the number of elements on the
queue. Sobel's original implementation for certain queue conditions mis-
counted the number of circular shifts by one so that reordering of the
queue after removal of an interior entry left one element out of position,
resulting in occasionally increased waiting times for some transactions.

A minor modification to the logic governing chain reordering corrected
this problem.

The Playthrough message destination assignment scheme was modi-
fied to match that found in the Reames models so that the distribution of
destinations is uniform. Sobel's original scheme generated message
destinations skewed toward shorter distances.

3.6 GPSS Ring Network Simulation Results.

This section describes the results of running both IBM GPSS/360
and UNIVAC GPSS 1100 programs for the various ring network models. It was
assumed that published data [9] were based on the same startup and run
termination conditions found in the Reames programs from [6]. The Pierce
model uses a startup of 250 messages to preload the queues and initialize
the system, and then accumulates statistics on the successful transmission
of 1200 additional nressages. The Newhall model uses a startup of 200 mes-
sages for initialization and then accumulates statistics over 1000 addi-
tional messages. The DLCN and Playthrough models both use a startup of
100 messages and accumulate statistics on 1000 successfully transmitted
messages. Without detailed statistical analyses of these startup para-
meters to determine if steady state has actually been reached, these
seemingly arbitrary but intuitively justifiable choices lead to acceptable
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Figure 3.2. Comparison of DLCN Output Data with those
for DLCNNE.
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qualitative results only if one is interested in gaining an idea of rela-
tive performance differences. A check of startup conditions plotting
relative changes in the mean of output parameters was made for DLCN and
Playthrough indicating that 100 terminated messages seems to be sufficient
for the warmup period. However, if one wishes to draw statistically
valid inferences from the simulation results, one should use formal
statistical tests while collecting the data.

Three important areas of concern are (1) starting criteria for
data collection, (2) stopping criteria, and (3) determining to what degree
the data are correlated. Starting criteria are concerned mainly with
determining at what point the simulation closely approximates steady-
state. Stopping criteria determine when (how soon) it is statistically
safe to stop collecting data and still be able to draw conclusions with
the required level of confidence. Correlated data yield less information
about a system per observation than if all data were independent. To
compensate for this lower average informational content, one must collect
more data. Later simulations of DLCN by itself for example [217 take
cognizance of these items. Although statistical validity of simulation
results was not the main concern of this study, it must be a major
consideration of any production oriented simulation study on whose results
decisions are to be bhased.

3.6.1 Message Interarrival Time and Length Distributions.
Tests of the correctness of generated exponential distributions in both
IRM and UNIVAC simulations were performed. Because message arrivals at
each network node (from its attached component) are assumed to be governed
by a Poisson process with identical parameters at each node, plots of
actual interarrival times were made to see if they resemble exponential
distributions and to see if those generated by the UNIVAC intrinsic
exponential function are similar to the IBM user defined exponential
function. One such example plot showing count of the number of messages
versus corresponding interarrival time, where interarrival times are
grouped into ten unit intervals, is shown in Figure 3.3. The mean inter-
arrival time is 300 character times at each node; for the six node system
considered here the system's mean interarrival time is 300 divided by 6.

A sample plot of the count of the number of messages versus
corresponding message length is shown in Figure 3.4. Each generated
message has nine characters of overhead information added to its length,
and each frequency count was accumulated over a ten character interval
after overhead information was appended; hence, the first interval counts
messages of length between nine and ten characters only thus skewing the
plot from a true exponential. All of the ring network simulation programs
considered here use an approximate cxponential distribution for generating

‘message lengths truncated at a maximum of 500 characters because of the

DLCN hardware defined delay buffer 1imit of 512 characters including
overhead.

Overall, the UNIVAC and IBM generators produce similar results
for exponentially distributed interarrival times and message lengths.
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The IBM plots are based on a sixty point user defined continuous approxi-
mation function, and the UNIVAC plots are hased on the GPSS 1100 intrinsic
exponential function.,

3.6.2 Some Effects of Varying Pseudo Random Number Sequences.
Plots of end to end delay (or total transmission time) versus messaqge
arrival rate at each node are shown in Fiqure 3.5; the two plots shown are
for both IBM and UMIVAC simulations nf the six node DLCN ring using
‘1ifferent combinations of pseudo random number qgenerators (or the same
generator in the IBM case differently seeded). For runs of 1000 message
terminatinns, the end to end delay is obviously sensitive to the senuences
of pseudo random numbers used. To smooth these differences one can make
several simulation runs using either different sets of random numher
generators or different sets of seeds and then either take the mean of the
results associated with each desiqgnated interarrival time, or construct
the final curve using minimum mean square error fit. This would he the
case if fixed termination counts are used or if the simulatinn is stopped
at a fixed time., A statistically better approach would be to design the
stopping criteria to take cognizance nf the confidence intervals invnlved
with the statistics of the output data, as mentioned earlier.

3.6.3 Nominal Versus Measured Parameters. DNifferences were
observed in UNIVAC and IPM GPSS outputs for DLON simulations using identi-
cal nominal parameters for both mean message lenqth and mean interarrival
time. The differences in observed mean message lengths are essentially
constant for all corresponding interarrival times (for UNIVAC a mean of
58.4+ 0.2 characters and for I3 a mean of 57,2 + 0.1, making the worst
case difference approximately 1% of nominal mean of 59 characters includ-
ing the 9 character overhead). Pecause the differences in observed mean
message lenqth are essentially constant, only differences in mean interar-
rival times appear to be significant, For the six node DLCHN simulation
#ith a nominal mean message length of 50 characters (excluding overhead)
two curves are shown in Fiqure 3.6 for both IBM and UNIVAC sirwlation
results for total message transmission time (i.e., end to end delay).

The curves marked "nominal" are plotted using the nominally specified
nodal interarrival times. The curves marked "adjusted" use an abscissa
of ohserved mean nodal interarrival times. The “total" time ordinates
using nominal interarrival time values are skewed to the high side for
the UNIVAC results and are skewed sliqghtly to the low side for the I3M
results, thereby qiving a more pessimistic estimate of system performance
for UNIVAC data and a more optimistic estimate of performance for IOM
data than is the case if observed mean interarrival times are used as
abscissas.

3.6.4 PResults for Newhall Loop. Simulation results for total
transmission times versus per node message arrival rate for the Newhall
Loon Network are shown in Fiqure 3.7. (furves for IRM GPSS/360, NUNIVAC
GPSS 1100, and the published data of Peames and Liu 797 are shown for
comarison. The differences are likely caused hv variations in the
actual pseudo randon number sequences used in each case coupled with the
100N transmitted messanes stopping criterion. The IBM/360 and UNIVACG
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results match reasonably well, indicating that successful and correct
translation between syntactically different dialects of GPSS is feasible.

3.6.5 Comparison of Results For A1l Four Networks. Paralleling
the study reported 1n [91, the primary quantities of interest in this
study are the mean total transmission time for messages (i.e., end to
end delay) and mean queueing time for messages; however, many other
quantities such as communication link utilizations were also measured
in these simulations. Some of the relevant times that are discussed
further are defined below:

(1) queueing time--time elapsed from message generation until
placement on the Toop by the transmitter at the source node;

(2) transmission time--time elapsed from message placement on
the loop until the last character is received and removed from the loop
at the destination;

(3) acknowledgement time--time elapsed from generation of the
acknowledgement message at the destination node until the last character
is received at the source node;

(4) total message transmission time (or end to end delay time)--
sum of (1) and (2) only for Newhall and Pierce loops; sum of (1), (2) '
and (3) for DLCN (including DLCNNE); and modified sum of (1), (2) and i
(3) for Playthrough, where Playthrough's simulation differs from the
others in that detailed simulation of character by character transmission
does not take place; rather, [control message--data message--control
message groupings of characters are used for simulator efficiency, and
the acknowledgement rides for free on the trailing control message.

(Note that inclusion of character error simulations, not currently used
in any of the loop network simulations, would likely require modifi-
cation of Playthrough code to perform character by character trans-
mission between transmitter-receiver pairs around the ring in a fashion
similar to the other three simulation models. Such modification would
also tend to increase the running time for the Playthrough simulation.)

The general characteristics of all four networks modeled are
the same. Each comprises six nodes, with each message source being an
identical and independently distributed Poisson process. Messages produced
at each node are addressed uniformly to the other five nodes, so that
message traffic is entirely symmetric and random. Message data lengths
are assumed to be exponentially distributed with a nominal mean of 50
characters; actually, a truncated exponential distribution is used with
no message exceeding 500 characters in length in order not to violate
the hardware defined maximum length message including overhead of 512
characters that NLCN was assumed capable of handling, For the three
loops other than Playthrough, nine additional characters of header infor-
mation were added to each message or packet produced; the Playthrough
simulation adds ten characters of overhead in the following way: three
characters of control message information to initiate transmission on
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the loop, four characters of overhead added to the data message in the
form of two characters of message length information and two characters
for error detection, finally followed by three characters of control
information to terminate the loop connection from source to destination
and to carry acknowledgement information from destination to source.
All timing is in arbitrary character-time units, so that no particular
line rate is assumed. Propagation delay on the communication channel
: itself was ignored. In the three models other than Playthrough each
o ring interface unit through which messages pass contributes two units of
delay: one unit in the receiver for address checking and one unit in
the transmitter. In Playthrough GO is delayed by only one time unit in
ring interfaces with nothing to transmit, and is delayed by three time
units when preceded by a three character control message to allow time
1 for address checking and control message transformation at appropriately
3 designated nodes before relay by the ring interface transmitter. Special
features in the DLCN model are described further in [9].

T,

§ Tables 3.1 through 3.4 present relevant results of the simula-

) tions for the four ring networks under consideration. In all of these
tables certain abbreviations are common and are discussed in this paragraph.
More specific labels and names relating to measured quantities and names
used in the program listings in Appendices B and C are discussed in
corresponding specific subparagraphs below. The first column in each
table lists the nominal mean message interarrival time at each node in
the corresponding network. Again, the units are character-times.

Recause the network {or system) comprises six nodes, the nominal mean
system interarrival time is one sixth of this value. The third and

fourth columns display both mean and standard deviation of the measured
system interarrival times as tabulated in the programs using the symbolic
name MSGAR in the Newhall, Pierce, and Playthrough models, and the name
GENAR in the DLCNNE model. The node arrival rate shown in column two is
computed as the reciprocal of six times the mean system interarrival time
value from column three. Columns five and six show means and standard
deviations for the measured mean message lengths (with program name
MSGLN). The reasons these values differ significantly from the nominal
mean of fifty characters are due to both underestimation of target mean

by the truncated exponential using the IBM pseudo random number generator
and to the way in which header characters are accounted for, as discussed
in the model specific paragraphs below. The seventh column 1ists mean faci-
lity utilization which is found by averaging the six facility mean utiliz-
ations. Each facility (or transmitter) utilization essentially measures
utilization of the corresponding outgoing communication link.

3.6.5.1 Model Specific Items for Newhall. Table 3.1 displays
means and standard deviations of two simulation output parameters of
intense interest and a third of only moderate interest. The mean total
queueing time experienced by all messages arriving for transmission
anywhere in the system of six nodes is tabulated in the simulation model
under the name TLQTM and is listed in Table 3.1 as one entry for each
corresponding message interarrival time. Message transmit time is shown
under the heading TRNTM, and total message transmissfon time which is
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approximately the sum of TLQTM and TRNTM (though tabulated separately

in the model) is shown under the heading TMGTM. The measured mean message
length tabulated under heading MSGLN is based on a nominal mean message
length of 50 plus 9 overhead characters (or 59 characters).

3.6.5.2 Model Specific Items for Pierce. For the Pierce loop
simulation results the measured mean message length is nearly the nominal
mean value of 50 characters. The nine character overhead is added to
each packet which consists of at most 36 characters, and the average
number packets per message (NPKMG) is 2.35. The average packet synchro-
nization time (SYNTM) is 17.4; the average packet transmit time (PTRTM)
is 46.6, with standard deviations shown in Table 3.2. The columns labeled
PKWTM display packet waiting time statistics, and under TPKTM display
total packet transmit time. The main parameter of interest is the total
message transmission time displayed under TMGTM,

3.6.5.3 Model Specific Items for DLCNNE. Measured mean message
length for the DLCN simuTation with character error generation facilities
disabled as shown in Table 3.3 is based on a nominal mean length of 50

characters plus nine characters of overhead. Means and standard deviations

for the following parameters of interest are displayed in the remaining
columns of Tahle 3.3, Statistics for total queueing time are shown
under heading TRQTM; those for total transmit time for data messages on
the way to their destinations is showh under RCVTM, and total transmit
time for the return acknowledgement message is shown under ACKTM, TLATM
is the total message transmission time which is (approximately) the sum
of TRQTM, RCVTM, and ACKTM, and it is this value that is plotted in
Figure 3.8. DLYTM records statistics for the per node time messages
spend in delay buffers enroute to their destinations.

3.6.5.4 Model Specific Items for Playthrough. Measured mean
message lengths shown in Table 3.8 for the Flaytﬁrouga model are based
on a nominal mean message lenqgth of 50 plus 4 overhead characters for a
total of 54 characters. The six additional control message characters
needed to start and stop data message transmissions affect queueing and
total time statistics, but are not included in the message length statis-
tics. Only the parameters of greatest interest are shown in Table 3.4,
namely tota! queueing time under heading TLQTM and total transmission
time {plotted in Fiqure 3.8) shown under heading TTLTM. TTLTM includes
the acknowledgement time embedded in the control mechanism. (Note,
message transit time is the difference: TTLTM minus TLQTM.) Table 3.5
displays additional information for the Playthrough loop, whe=e mean
queueing times versus distance (in number of nodes to the destination)
are tabulated. Average waiting times for messages with destinations one
hop away are shown under heading TLQl, and those for messages with desti-
nations five nodes away are shown under heading TLQ5. The maximum number

of messages waiting in any of the six queues as well as the average number

of messages waiting in queue during the simulation are also tabulated
against corresponding message interarrival times per node.
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3.7 Findings.

The data generated for Newhall, Pierce and DLCNNE Voops aqree
reasonably well with published data [97 in that the relative positions of
the plotted total transmission time data are similar. The exact values
differ somewhat, which for Newhall and Pierce can be accounted for by
pseudn random number generator variations. DLOCNNE differs from DLCN
results because of the disabling of the erroneous message generation and
retransmission scheme resulting in an approximately ten per cent difference
in computed values as discussed in Section 3.5.2 of this report.

The significance of Fiqure 3.8 is that it provides the first
extensive comparison between the DLCN and Playthrough link level protocol
schemes. 0Overall transmission times for DLCN are lower on the averaqe
than for the other 1ink level protocol schemes, and this is to be ex-
pected. Under heavy loading, the Newhall, Playthrough, and even Pierce
schemes suffer from increased queueing delays, whereas the DLCN scheme
is designed to minimize queueing delays. Nothing is free, however,and
in the DLCN scheme messages suffer random exponentially increasing de-
lays en route to their destinations, making strict timeouts for error
control difficult. Transit times in Playthrough grow approximately
linearly with almost imperceptible slope, so that as in Newhall, once a
message transmission is initiated it proceeds rapidly and is completed
in almost fixed time. The disadvantage of Playthrough is that under
heavy load, queueing time grows exponentially hecause long hop messages
must wait long times hefore a sufficient number of links from source to
destination nodes become simultaneously free.

These disadvantages are common among schemes that use dedicated
circuit switching in the transmission of messages. Packet switched
schemes tend to experience less rapid growth in queueinqg time under heavy
1oads; however, they require dedicated intelligence or capacity in either
the ring interface processor or in the attached component (e.q., the host
computer) to packetize messafes at their sources and to reassemble at their
destinations packets that are arriving in arbitrary sequence from possibly
disparate messages. NLCN employs variable lenqgth packets in this sim-
ulation up to a maximum of 512 characters in length, which represents a
chosen hardyare limit. Messages of longer length were not allowed in this
simulation hecause the code to packetize them was not included in the
model. DLCN minimizes queueing times by usually placing on the ring
newly arriving messages ahead of messages already on the rinq through the
use of expandahle delay buffers., This technique appears to be a particu-
larly effective means of maintaining reasonable mean transmission times
under heavier loads than is possibie with the other 1ink level schemes.

An advantage of the Newhall and Playthrough protocols is their ability to
transmit quickly messages of any arhitrary length when the number of
characters arriving for transmission to the entire network does not
exceed the burst character transmission rate.

M interesting observation from examining the plots in Fiqure
3.8 is that the perpetually circulating control token in the Playthrough
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scheme tends to have a packetizina effect on mean total transmission
times; so that for non-saturating loads it corresponds to but {s lower

than the mean total transmission time for the Pierce scheme.

Meither the Pierce nor the Mewhall simulations include the load-
inq effects and delays produced hy the inclusion of acknowledgements for
messaqges sent; whereas, Playthrouah and DLCNNE do include them. The
similation results are therefore favorahly hiased for Pierce and Mewhall,
4, COMCLUSTIOMS AMD RECOMMENNATINMS FOR FURTHER WORK

4,1 GPSS Capabilities.

Some canahbilities of the GPSS languaae for modeling and simu-
lating systems were presented in Chapter 2, and differences in two avail-
ahle implementations of this lanquaqge were discussed. GPSS has several
facilities for system level nodeling of computer comrunication networks.
Messages are easily modeled as dynamic entities, called transactions.
Lanquage features are provided for generating or implementing messaqge
arrivals and other randomly occuring events such as 1ink and node failures
and dynamic routing scheme choices. Equiprent entities such as trans-
ritters, receivers and messaqge queues are easily modeled. Both automatic
and user specified means for collecting and comuting statistics for
nessaqe transmission such as mean, variance, and distrihutions (per-
centiles) of queueing, transmission, and end to end delay times are also
included, These statistics can he used to predict svstem behavior under
varying conditions,

4.2 Sample Simulation Results and Anplications.

To 11lustrate use of these canahilities, GPSS models of
several rinq tonoloay computer communication networks were exanined in
Chanter 3. DNata were collected to indicate nerformance under varying
system load for each of the ring network link level protocols considered.
These nerformance data were plotted to show relative performance of the
Ajffering 1ink control and messaase handlina schemes. Tests for statis-
tical validity of these data should he performed hefore decisive con-
clusions are drawn from these comparisons. It was the purpose of this
study to denonstrate use of GPSS for computer comunication network
modeling rather than to nroduce statistically valid system comparisons.
However, some statistica) validity tests for the Playthrough data were
performed usina the method of batch means employed hy Wolf [21] in his
sirulation of a double loop NLCM configuration. For instance, the mean
total transmission time entries (TTLTM) in Tahle 3.4 satisfy a 90%
confidence level test at nominal interarrival times of 300, 600, and 1000,
This suqgests reasonable accuracv in the plotted performance data.

The simulations that have heen run have used a nominal mean

message length nf 5N characters (some messages are lonqer and some are
shorter)., This nean message length approximates the characteristics
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of many actual computer communication schemes, hut the actual distributions
involved as well as their means may vary somewhat from this choice. To
dqain an appreciation of how well the ring network schemes considered

here might work in a typical computer communications structure, we must
make additional assumptions about mean interarrival times for messages,

the number of hinary diqits or hits used to encode the characters,and

the speed of the communication links in the network in bits per second

to make it independent of modulation scheme.

In order to use the data presented in Chapter 3 recall we
have assumed that messages are on the average 50 and no more than 500
characters in length with length qoverned hy a truncated exponential
distribution. If one assumes 10 bits are required to transmit one
character (7 code bits,l parity bit, 1 start hit, and 1 stop bit for an
asvnchronous format), then one "character time" at a link transmitter/
receiver speed of 1 million hits per second (1 Mbps) is 10-5 seconds,
and at a speed of 1200 bps is 8.33x10-3 seconds. Assuming a network
of six identical data terminals ir which operators send messages to some
destination node at an average rate of one every 30 seconds, then we
compute the communications network (i.e., system) arrival rate as: multipl
six {the number of nodes corresponding to the simulation results presented
times the per node arrival rate (in messages per second) times the time
for one character (in seconds per character time). At a line speed of 1
Mbps these assumptions result in a mean system arrival rate of 0.002x10-3
messages per character time (or 0.09033 x 10-3 messaqes per character
time per node). Looking in Fiqure 3.8 under this arrival rate, one
finds that for all four ring network structures considered the expected
mean total transmission time for messages is less than 200 character
times which corraesponds to less than 2 milliseconds. At a 1link speed
of 1200 bns using otherwise same assumptions, the per node arrival rate
is 2.78 x 10-3 messages per character time. At this arrival rate
Fiqure 2.8 says that for all hut the Mewhall scheme the expected messaqe
transmission time is less than 540 character times (or 4.5 seconds); for
the Meuball scheme the expected message transmission time is approximately
a000 character times or 33 seconds, not a very desirable performance
if one expects to qenerate a new message for transmission once every 30
seconris.

4.3 Simulation Lanquage Alternatives.

Having the capahility to simulate various computer communication
networks quickly permits analysts to identify potential bottlenecks and
deficiencies in proposed computer communication network schemes. Various
discrete event lanquages are availahle to facilitate the programming of
these simulation models. Two of the more popular are various dialects
onf (PSS and SMSCRIPT. GPSS is a block oriented lanquage in which simul-
ator specifications relate more to the flow of dynamic entities in the
actual model than to traditional computer proqramming languages. 6PSS
is interpreted rather than compiled as is SIMSCRIPT. Various comparisons
of these languaqes 237 and 7247 pnint to advantages and disadvantaqes
of each, Reqinners usually have an easier time learning GPSS because of
the abundance nf tutorial material available; whereas, far less complete
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tutorial material is available to beginners learning SIMSCRIPT. Because
SIMSCRIPT is compiled, some models written in this language can be expec-
ted to execute more rapidly than do similar medels written in GPSS. Recent
additions to the SIMSCRIPT language, however, tend to reduce its speed
advantage [23]. Certain computations are more easily specified in one
language than in the other. For instance, exponentiation is not available
as a primitive and is cumbersome to specify in GPSS [21] p.111.

4.4 Use of GPSS.

Two dialects of GPSS (namely, GPSS/360 and GPSS 1100) were used
in the example computer communication network simulations documented here.
Differences in both syntax and semantics between the two dialects have
been identified and are discussed in Chapter 2. Because of these differ-
ences, care should be exercised when comparing output data from one dialect
with that from another in order to insure that the comparison is meaningful.
It is however possible to correctly translate a model from one dialect to
another by carefully tracing the flow of transactions in the two models to
identify and correct or at least account for differences in interpreter
execution (i.e., semantics). This task, however, is not particularly
easy and should not be taken lightly.

Because of the variety of programming techniques required to
implement the several ring network simulation models in GPSS, the collec-
tion of programs found in appendices B and C coupled with those in [6]
should be a valuable aid to programmers seeking to model other computer
communication network architectures and protocols. Each protocol considered
has its own peculiar implementation requirements that relate to other
actual and potential computer network structures.

4.5 Future Work.

Because of recognized deficiencies in the GPSS language, such as
long execution times and cumbersome constructions to do simple computa-
tions directly available in other languages, an investigation into the use
of the discrete event simulation language SIMSCRIPT I1.5 should be considered
for further work. There are indications that SIMSCRIPT I1.5 is superior
to GPSS because of its generally higher speed of execution and lower memory
space requirements for the same model [23] and [24]; also, model implemen-
tation reportedly requires programmer skill roughly equivalent to that of
a competent FORTRAN or ALGOL programmer, which should cause little diffi-
culty for most organizations. The set of examples considered in Chapter 3
could be used as a starting point(and validation check) for initial SIMSCRIPT
I1.5 modeling efforts. Use of SIMSCRIPT will not necessarily replace the
use of GPSS because some investigators [24] indicate that it is likely to
be faster to program an initial system model in GPSS to get quick results
that can be used to guide the development of a more comprehensive (and
possibly more efficient) SIMSCRIPT II.5 model.

Because use of a ring network architecture has been proposed for
SIGMA [29], the simulation models examined here should be considered for
potential further use in evaluation of the SIGMA computer communications
structure.
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APPENDIX A

ON THE RANDOMNESS OF PSEUDO RANDOM NUMBER GENERATORS
USEN IN IBM GPSS/360 AND UNIVAC GPSS 1100 LANGUAGES

A.1  INTRODUCTION

Tests of randomness were performed on the UNIVAC GPSS 1100 and
IBM GPSS/360 pseudo random number generators when simulation models
translated from one language to the other failed to yield comparable
statistics for checkout runs. Initially, the translations themselves
were suspect; however, subsequent investigation found no basis for
faulting the translations.

The simulation models tested rely on pseudo random number gener-
ators embedded in the languages to generate message traffic for input to
the models. Small differences in mean message lengths and mean interar-
rival times for this traffic were observed for corresponding runs in
the two lanquages, and it was conjectured that these differences might
be caused by nonrandom behavior in the underlying pseudo random number
generators. Testing of the pseudo random number generators was thus
bequn. It is conjectured that if the generators cannot be rejected for
nonrandom behavior using a set of standard statistical tests for random-
ness, then semantic differences in the implementation, instantiation,
and/or interpretation of these two versions of GPSS are likely. Additional
tests for these semantic differences are reported elsewhere.

The following sections provide a discussion of the testing of
the generators, and the results of those tests.

A.2  TESTS SELECTED

A.2.1 Introduction to Randomness Tests.

Three standard tests of randomness were chosen in this study,
namely: (1) the runs ahove and below the median test, (2) the maximum of
five test and (3) the runs up and down test. Each of these tests attempts
to determine if a generated sequence of numbers is sufficiently random
by detecting either cyclical patterns or otherwise nonrandom behavior.
A1l of the chosen tests are empirical in that a computer manipulates
groups of numbers from the sequence and computes certain statistics
which are compared with standard statistical tables[257. While it is
recognized that there are a great many randomness tests, these particular
tests were chosen both because of their reputed reliability and the ease
with which their algorithms could be adapted to a computer program{25].
Also, runs tests are perhaps the only statistical tests which focus on
the order in sequence(267.

55




N B ix
AN MY 5054 F AL O M o4 s ST S T e -

A.2.2 Runs Above and Below the Median Test.

The first test chosen was the runs above and below the median
test. In this test a run is defined as a series of either numbers (or
in the nonparametric approach, ranks) within the sequence having values
strictly above or strictly below the value of the median observation.
The nonparametric test method merely requires an ordered set of ranks,
that is, the relative positions of the values of the observations
within the sequence. Order is important because this test is based on
runs.

A test statistic, i.e., a random variable whose values are deter-
mined by sample data [277, can be calculated based on the total number
of runs in a sequence. This statistic may reveal nonrandom behavior in
that either too few runs or too many runs would likely be the result of
a trendy or cyclical pattern. The sampling distribution of the number
of runs can be approximated by a normal distribution; therefore, a
normal test is applied to the actual number of runs in the sequence [277.

The test statistic Z is defined as follows:

_ u - E(u; ,
L= [var(u)]

where u = number of runs in the sequence,
2n,n '
172
E(u) = ——— + 1,
M*m

Zn]n2 (2n]n2 -n - "2)

var(u)

(ng + nz)‘ (n] +n, - n’

n1= number of observations above the median, and
np = number of ohservations below the median.

The test statistic Z is then compared to critical values obtained for
a two-tailed normal test from which the critical region (the region
where the hypothesis of randomness must be rejected) is determined.

A two-tailed normal test assumes a normal distribution about some
mean, and then a critical region is obtained for both the upper and
lower tails of the distribution. If Z falls within the critical re-
qion, then the sequence is suspect and the generator for the sequence
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is dismissed as bein? nonrandom. A negative value of Z falling in the
rejection region implies that there are not enough runs in the sequence;

on the other hand, a positive value of Z falling in the rejection region
is indicative of too many runs and possibly a repetitious pattern [27].

A.2.3 Maximum of Five Test.

: The second test chosen was the maximum of five test. Knuth [25
- points out that the use of this test for a moderately sized sequence
w1l tend to detect hoth tocal and qlobal nonrandom behavior. Local
nonrandom behavior could likely be the result cf clustering of observa-
tions around a single value while global nonrandom behavior might be due
to the multiplier for the generator not being large enough (e.qg., see
Section A.4),

This test consists of obtaining observations Ug;, Ugis1seees
Ugisq for j =0, ooy, m -1 where m is the integer quotient of ' n
divided by 5, n heing the total number of observations; let Vi
be the maximum of each of these sequences of five numbers, e
Kolmogorov-Smirnav (KS) test method for measuring the amount of
deviation between an assumed distribution function and the empirical
or actual distribution function is used here. The KS test is
applied to the sequence Vg, ..., Vo1, which is assumed to have the
curulative distribution function F x} = x5 (0<x<1). It can be shown
that the distribution function for the Vj's is indeed F(x) 7257. The
Kolmogorov-Smirnov test statistics K*m and X-m are then compared to
standard statistical tahles to determine whether the values lie within
the critical regions for given confidence levels, where K*m is the
greatest amount of deviation when the actual distribution function is
greater than F(x), and Km is the greatest amount of deviation when
the actual distribucion function is less than F(x). If the values of
K*m or K-m are in the critical regions, then the hypothesis that the
sequence is random must he rejected.

A.2.4 Runs Up and Down Test.

The last of the three tests selected was the runs up and

: down test. This test is examined in detail by both Knuth [25] and
f . Fishman [287. The associated test statistic is calculated based on
the number of runs up and the number of runs down. Here, a run is
defined as a series of observations such that Xj < Xj41 €evel Xjyp
! for runs up, or conversely, X; > Xji 1 deed xj+s for runs down,
;li ) for-r,s>n. The test statistic is Jiven by *

{

i

P P
. R = ¢ Ri - -
5 P N R CHN U Ry
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number of runs of length 1,

where Ry =
Rj = number of runs of length §,
E(qu = expected nunber of runs of length i (see Tahle A.l),
E(R]) = expected number of runs of length j (see Tahle A,1),
Ci, = element in row i and column j of the inverse of the
" covariance matrix of Rj, ..., Ry (see Tahle A.2],
p = length of longest run,

TARLE A.1 (from Fishman [281])

£(R,) = 2n 12+ 3 41 - , 13 + 3i -i-4

(i + 3 (i+ 31
=0.4167n  + N.0R33 i=1
=0,1933n - 0,2333 - §=2
=0.0528n - 0.1306 i=3
=0.0115n - 0.0413 124
=0.0020n - 0.0095 §=5
=0.0003n - 0.0017 i=6
=3.9x10-5n - 0,003 i=7

TABLE A.2

4529.4 on44 .9 13568 18091 22615 27892
anas .o 18097 27139 36187 45234 §657%9
C = 13568 27139 40721 54281 67852 83685
1800} 36187 54281 72414 ap470 111580
22615 45234 67852 - 90470 113262 139476
27892 R5789 83685 1115RN 139476 172860
The test statistic R is known to have an asymptotically chi-square dis-
tribution with p dearees of freedom [2R]. Fishman proposes an analo-
qous form using a six deqree of freedon chi-square distribution for
either of the cases vhere p = 65 or p = 7. This form combines Ry with

Rg and E(R9) with E(Rg). When p is equal to five, Rg is set to zero
so that the computer proqran used for the testing need not he altered.
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A.3 TESTING

A.3.1 Judgment Criteria.

For the analysis of the "goodness" of a pseudo random number
generator, the criteria given by Knuth [25] were used. The criteria
specify that for the range of a given statistic S, a generator is classi-
fied as rejected if the valve computed for a sample, S*, lies in the
outermost two percent of the known distribution function of S (one percent
on each end). Likewise, it is classified as "suspect" if S* lies in the
next innermost eight percent and “"almost suspect" if it lies in the next
innermost ten percent. The following table summarizes these criteria.

TABLE A.3. ACCEPTANCE INNICATORS VERSUS TEST STATISTICS

S* in Range of S Indication
0-1 percent, 99-100 percent Reject
1-5 percent, 95-99 percent Suspect
5-10 percent, 90-95 percent Almost Suspect

Translating this table to the particular tests beinq used gives crit-
ical reqgions as shown in Tahle A.4.

One additional consideration should be examined concerning
the use of nultiple tests. For a rejection region of size alpha
using N tests, the probability of reJectwng a generator even though
the hypothesis of randomness is true is given by 1 - (l-alpha) Here
alpha = 0,02 and N = 3, so the probab1l1t§ of rejecting a generator that
is actually random enough is 1 - (1-0.02) 0.06; therefore, the cri-
teria of rejection used in this study lead to a 94 percent confidence
Tevel.

A.3.2 Test Procedures.

The ten UNIVAC GPSS 1100 pseudo random number generators were
tested along with that of ISM GPSS/360. GPSS/360 actually has eight
qgenerators available, but when they are used in unmodified form, each
returns an identical sequence of random numbers [1, p.1447. The UNIVAC
generators were tested by using the GPSS 1100 random number generation
algorithm to produce a sequence of numbers. Using the algorithm, in-
stead of merely copying a sequence of numbers from a GPSS 1100 program,
saved considerable time. It should be noted that the sequence generated
by this approach was checked against the output of actual random numbers
from a GPSS 1100 program to insure exact replication of the sequences.
Unfortunately, this approach could not be easily applied to the IBM
generator. This prompted the writing of a short program in GPSS/360 in
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TABLE A.4. ACCEPTANCE INDICATORS VERSUS TEST STATISTIC CRITICAL REGIONS T

1. Runs above and below the median

Iz| > 2.33 Reject
2.33 > |Z] > 1.65 Suspect
| 1.65 > {z] > 1.28 Almost Suspect
j 2. Maximum of five A «T
K600 < 0.0648 Reject

K600 > 1.5092
0.648 < K600 < .1544 Suspect
1.5092 > %600 > 1.2170
K200 < .0603 Reject
K200 > 1.5033
0.0603 < K200 ¢ .1502 Suspect
1.5033 > K200 > 1.2119

3. Runs up and down

R < 872 Reject
R> 16.81
B72 <R < 1.64 Suspect

16.81 > R > 12.59

1.64 <R ¢ 2,720 Almost Suspect
12.59 > R > 10.65

. Yoyt o ol ae i b =
' LA ’.
2 _‘QA“M‘ i - - - -
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order to provide a listing of the IBM sequence, which was then read into
the testing program. Only the results of tests for sequences of length

1000 to 3000 are discussed in detail because the simulation models of
concern in this study call on any given generator approximately that many
times in any run. Tests on sequences of length greater than 5000 are of
little interest at this point, but some results of tests on these longer
sequences are given in Table A.6. A discussion of the random number gener-
ation techniques is given in the next section.

A.4 GPSS PSEUDO RANDOM NUMBER GENERATION SCHEMES
A4.1 IBM.

According to the IBM GPSS/360 User's Manual T2, pp. 36-371, the
random numher generation algorithm is as follows:

1. The appropriate word of the index array points to one of the
eight numbers in the base number arrayv. Since the index array words are
initially zero, the first base number used will be the seed.

2. The appropriate number in the multiplier array is multi-
plied by the base number chosen in step 1.

3. The low-order 31 bits of this product are stored in the
appropriate word of the multiplier array, to be used the next time a random
nunber is called for.

4. Three bits of the high-order 16 bits of the product pro-
duced in step 2 are stored in the appropriate word of the index array, for
future use. This number (0-7) points to one of eight words of the base
number array to be used the next time a random number is called for.

5. (a) If the random number required is a fraction, the middle
32 bits of the product produced in step 2 are divided by 106, and the
remainder becomes the six-digit fractional random number.

(b) If the random number required is an integgr, the middle
32 hits of the product produced in step 2 are divided by 105, and the
remainder becomes the three-digit random number.

A.4.2 UNIVAC.

The UNIVAC random number generation algorithm {3, pp.3.30, 3.32]
is a sirple one. It uses a linear congruential or mixed linear congruential
generator, as the case may be. It takes the form

X1 =S
Xpep = (MX +1) mod 235

where S= seed, m= nultiplier, and I= incrgpent. When a fractional number
s needed, the integer X; is divided by 2°°. When an integer value

61




]
from 0 to 999 is required, the fractional number is multiplied by 103 {
and truncated. i

A.4.3 Independent Streams of Random Numbers.

The UNIVAC pseudo random number generator uses ten different
combinations of multipliers, increments, and seeds to produce its ten
random number sequences. The IRM has one qgenerator, replicated eight
times.

A.5 RESULTS OF TESTS

Using the established critical regions, it can be seen that
most of the generators fared well. (See Table A.5.) It appears that
UNIVAC qenerator nine may have a few problems associated with its use; i
the values of the runs up and down test statistics for sequence sizes of
both 1000 and 3000 1ie in the rejection region. Also, the value of the
maximum of five test statistic K-600 places more suspicion on the se-
quence produced by this generator. These facts suggest that generator
nine should not be used, at least in short simulation models, because
the number sequence produced by it does not exhibit sufficient randomness. ,

The only other generators with test statistic values in the
rejection region are the UNIVAC generators one and two. The runs up and
down test statistic for a sequence length of 1000 is far too large for
each of the generators. It is interesting to note that generator one is
used as the resident generator in the GPSS 1100 lanquage. This means
that on occasions when the TIME and GO TD fields require a random number,
they call on generator one. (It should also he noted that the simulation
models studied did not include these types of TIME and GO TO fields.)
Generator two, which should also be rejected for a sequence size of 1000
according to Knuth's criteria, was employed in all four of the UNIVAC
simulation models studied. For each message introduced into the model,
the generator was called on twice, once to generate Poisson interarrivals,
and once to create exponentially distributed message lengths. Since a
minimun of 1000 messages were included in each run, the second generator
was called on at least 2000 times, probably closer to 3000 times when
"warmup" and queued messages are counted. Therefore, the nonrandom
behavior of generator two for a sequence size of 1000 does not appear to
be a possible cause for the discrepancy between the UNIVAC and IBM results.

The only other generator that is reasonably suspicious is the
third UNIYAC generator. Three of the four maximum of five test statistics
for sequences from this generator lie in the “suspicion" range. Inciden-
tally, this is the generator used in the uniform distribution function in
the UNIVAC models used to determine the routing of the messages.

Since only two random number generators are required for the
UMIVAC sirulation models in addition to generator one, it would seem
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advantageous to select generators that cast the least doubt on the re-
sults. This usage of the “best" generators would lead to a more meaning-
ful comparison between UNIVAC and IPM data.

There appears to be no need to tamper with the IBM generator
as it comes through the tests very well., But, if longer sequences are
accepted for UNIVAC, then IBM sequences of similar length should be
tested for randomness.

Examination of even longer sequences for the UNIVAC generators
(see Table A.6) shows a trend for almost all of the generators failing
the runs above and helow the median test for sequence sizes greater than
10,000 nunhers. The maximum of five test and the runs up and down test
reject generators seven and six, respectively, for sequences of 8000

-numbers and up. From these results, it can be seen that there are partic-

ular qgenerators that shoyld be avoided for certain sequence sizes.
A.6 SUMMARY AND CONCLUSIOM

The randomness tests performed indicate that the UNIVAC gen-
erators are primarily suited for models requiring numerical sequences
of length from 3000 to somewhere around 8000, The IBM generator cannot
be rejected at the 94 percent confidence level for sequences of length
1000 or 3000, but a study of its characteristics for longer sequences
should be performed. From this study, it appears the generators
used in the simulation models are in fact random enough and do not cause
the principal differences between UNIVAC and IRM simulation results.




TABLE A.5  SUMMARY OF RANDOM NUMRER TESTS

SEQUENCE
GENERATOR SIZE MEAN  MEDIAM 7y  KH(N/S)  KT(N/S) R(N)
E UNIVAC 1 100 05 613 0.13 0.7739  0.3101 31.78%%*
v 3000 502 500 -0.22 0.8147 n,4625 7.22
UMIVAC 2 1000 484 475 0.63 0,7957 0.1212** 33,15%**
3000 496 492 0.07 0,0345  0,1802 10.52
UMIVAC 3 1000 497 499 -1.27  0.9341 n.0391;: 2.94
3000 A0 492 -1.02  1,3372 0.0727 7.36
UMIVAC 4 1000 408 409 -0.25 10,8428 0.1650 15.R1**
3000 401 487 0.04  0,9271 0.6819 1.7
UMIVAC & 1000 aaq 488 -1.71*: n.8114 0.2340 4.41
3000 £10 &11 -1.98** n, 3244 1.1122 5.24 ‘
UNIVAC 6 1000 506 509 1.39* 0.2052 n.8640 6.68 §
3000 49?2 491 1.50% 0,7937 0.2979 2.R2 :
UNIVAC 7 1000 484 469 n.76 1.1430  0.3604 5.00 |
3000 499 496 1.17 0.8742 0.6600 5.48 i
|
UMIVAC R 1000 499 514 -0.70. 0.8881 0.5400 12.1**
3000 496 494 0.07 0.5209 1.0026 2.99
UNMIVAC © 1000 516 517 n.no  n.5809 0.9238 34,12%**
30n0 5n1 508 n.R4  0.3287 1.3742%* 19.69***
UNIVAC 10 1000 502 505 -1.90** 00,5561 1.0451 4,33
3000 405 498 -1.20 0.0188 0.6737 2.19
IRM 1000 497 484 -1.45% 0,9675  0.3310 11.07*
3000 493 490 n.a4 1,0176 0.1103** 7.55

*  Almost susnect
**  Suspect
*** Deject
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TARLE A.6 SUMMARY OF RANDMM HUMBER TESTS

NUMPER NF | BASIC SERIFS | RUNS ARNVE | MAXIMUM OF & TEST | RUNS UP AMD
GENERATED | STATISTICS AMD DOWN TEST
R.N.'S ' RELOW THE
MENTAM TEST
NFNERATAR
' NIMPER M MEAN MENIAN 2y K¥(N/5)  K-(N/5) R(N)
1 3,000 502 509 -0.22 0.8147 0.4625 71.22 4
- £, 000 502 508 -1.28 0.4339 1.2043 6.16
'y 11,000 502 507 -2.90 0.4013 1.1295 7.88
. 12,00 501 506 1.1 0.2967 1.2199 11.70
? 3,000 196 497 a.n7 0.9345 0.1702 10.57
R, 00N 495 494 -0.64 n,7179 0.4526 9.88
10,000 405 a0 n.51 n.8555 0.6793 10.63
12,000 096 494 4,02 0.7478 06870 5.77
e 3,000 L L) .77 T.3372 T.O727 T.3R
| 2,000 498 500 -1.76 n,6061 1.1955 | 10.8¢
10,000 297 499 =03 0.7425 n.1473 7.81
12,009 498 501 -5.72 n.6336 0.5711 0,87
4 3,000 1 48T AR7 —n.n2 09271 0.ARIC T.17
8,000 | 493 292 n.54 | 0,0850 n,2277 2.08
10,000 494 403 |  .0.89 n.RA65 n.1319 1.74
12,00 492 491 -6.70 0.9625 0.1170 9,37
3 3,000 510 511 -1,94 0.3247 1.1172 5.28
| 8,000 408 196 -5.77 0.8454 0.1703 4.96
| 10,000 | 500 497 -4.45 | 9.7345 0.3696 2.39 [
12,000 499 496 hakabatl 0.7638 n.4029 4.39
g 3,M0 197 491 TR0 . 7937 0.2970 2.0
3,000 500 500 1.87 n.3055 n.R177 31.09
10,000 199 497 3.75 n.447° 0.6726 32.09
12,000 497 495 | 8.77 0,6531 0.5257 27.04
7 3,000 99 496 | T.17 0.A747 C.5500 5.28
8,0n0 505 506 2.14 .| N.1996 1.7293 .10
10,000 | 505 507 1.08 0.2232 1.82n2 5.44
12,000 506 508 3.53 0.2445 1.9327 12.76
| 2 3,000 195 9% 0.7 05209 T I.h026 ~2.99
. | 8,000 492 498 -3.9n n,9006 0.2238 5.76
i 10,000 499 500 -6.48 0.9342 0.1887 3.86
] 12,000 199 500 aloteld 1.0519 n.1110 7.33
- g [ 3,000 50T 508 (Y na237 —  1.37%7 19,69
v | 8,000 501 498 .27 0.2698 1.4032 4,47
4 . 10,000 501 499 -1.02 n,3801 1.2502 3.80
' - 12,090 500 498 2,02 0.3797 0,9532 12.78
i iy 7,000 795 40% =170 70188 0.6737 2.19
: e,0n0n 50N 504 -1.34 n.6798 n,4967 14.67 [
10,000 490 &M} -0.92 .7262 0.2317 7.35
12,000 500 505 1.10 0.7302 04668 10.19
NARMAL | X0 MNGORNVSSMIRNOY x2(6)
R4 I 1,000 107  4aa -1.25 n,9675 03310 11.07
3,000 193 490 n,44 1.0176 0.1103 7.55
10,000 501 499 -0,3? 0.6466 0.5921 | 1.32
65 _ Next page s blank.
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GPSS/360 PROGRAM LISTINGS
FOR RING NETWORK SIMULATIONS
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For NEWHALL/IBM GPSS Program Listing see Reames [6], pp. 191-194,

The following blocks were inserted at the top of the program shown in
Reames [6] in order to successfully execute the GPSS/360 program on

the APG IBM 360/65 computer system:

REALLOCATE XAC,1200,8L0,100,FAC,100,570,100,QUE,?00,L0G,100
REALLOCATE TAB,50,FUN,10,VAR,20,FSV,100,HSY,50,CHA,100
REALLOCATE BVR,10,FMS,10,HMS,10,MAC,5,COM,90000

SIMULATE




For the PIERCE/IBM program 1isting see Reames [6], pp. 187-190.

The change to this program starts at the bottom of page 189 in [6]
and is as follows:

* LAST PACKET OF A MESSAGE HAS BEEN RECEIVED. RECORD TOTAL
* MESSAGE TRANSMISSION TIME.

*

LASTP TABULATE  TMGTM RECORD TOTAL MESSAGE TRANSIT TIME
*

* CHECK IF LAST TERMINATION THEN SAVE RELATIVE CLOCK

*

EYT W

SAVEVALUE 3+,K]
TEST E X3,X4,PATW
SAVEVALUE 2+,C1

*

* SAVES VALUE OF RELATIVE CLOCK FOR ABSOLUTE CLOCK
*

PATW  TERMINATE 1
*

*

* TABLES AND QTABLES --
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For DLCNNE/IBM Program Listing see Reames [6], pp. 178-186.

DLCNNE is identical to DLCN except that the following blocks in DLCN at
the top of page 181 in [6], which now read:

RECVR LOGIC S *1 . GET CONTROL OF RECEIVER

TRANSFER .010,%+4,%+] PERFORM MSG ERROR CHECKING,
TRANSFER .010,%43,%+] ASSUMING 1 ERROR PER 10,000 CHARS.
ASSIGN 5,K3 IF ERROR, SET ACK MSG RESPONSE
TRANSFER ,RECVD & GO SEND ACK MsG

. Loop 6,RECVR+1 CHECK EACH CHAR. OF MSG FOR ERROR

RECVD ADVANCE V$AMSG ALLOW TIME TO RECEIVE DATA

have been changed in DLCNNE to read:

RECVR LOGIC S *1 ’ GET CONTROL OF RECEIVER |

TRANSFER J¥43 SKIP POSSIBILITY OF ERRORS IN CHARS.
ASSIGN 5,k3 IF ERROR, SET ACK MSG RESPONSE
TRANSFER »RECVD & GO SEND ACK MSG.
. Loop 6 ,RECVR+1 CHECK EACH CHAR. OF MSG FOR ERROR
RECVD ADVANCE V$AMSG ALLOW TIME TO RECEIVE DATA

: This change disables retransmissions due to received character errors;
i hence, the name DLCN/"No Errors" or simply DLCNNE..

n
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AMSAA
APG
ARRADCOM
ASAS FSD
c3a

coc

cPy

CSD

DA

DLCN
DLCNNE

GPSS

IBM

OPTADS

PM

SACDIN
SIGMA
SIMSCRIPT

TOS CASE
UNIVAC

APPENDIX D
GLOSSARY

US Army Materiel Systems Analysis Activity

Aberdeen Proving Ground, Maryland

US Army Armament Research and Development Command

A1l Source Analysis System Full Scale Development

Command, Control, and Communications Analysis

Trademark and abbreviation for the Control Data Corporation
Central Processing Unit of computer systems

Combat Support Division

Department of the Army

Distributed Loop Computer Network, The Ohio State University.

Modified simulation model for DLCN with no errors in character
transmission

Either of two simulation language dialects called "General
Purpose Simulation System" by IBM and called “General Purpose
Systems Simulator" by UNIVAC

Trademark and abbreviation for International Business Machines
Corporation

Operations Tactical Data Systems

Program or Project Manager

Stragetic Air Command Digital Network

Name of force level maneuver control system

Generic name of a computer programming language developed at
the RAND Corporation for discrete event simulation with a
version marketed under the trademark SIMSCRIPT II.5 by Consoli-
dated Analysis Centers, Inc.

Tactical Operations Systems for Corps and Subordinate Echelons

Trademark and name of the Sperry UNIVAC Division of the Sperry
Rand Corporation
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